
LLNL-PRES-743737
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Quicksilver: A	Proxy	App	for	the	
Monte	Carlo	Transport	Code	Mercury
Workshop	on	Representative	Applications

David	Richards,	Ryan	Bleile,	Patrick	Brantley,	
Shawn	Dawson,	Scott	McKinley,	Matthew	O’Brien

September	5,	2017



LLNL-PRES-743737
2

Sierra	will	include	IBM	Power9	CPUs	and	Nvidia Volta	GPUs

IBM	Power	9	CPU
<10%	Sierra	Flops

Nvidia Volta	GPU
>	90%	Sierra	Flops
16	GB	HBM/GPU

~4500	nodes
Each	node	has:
2	Power9
4	Volta	GPU



LLNL-PRES-743737
3

§ Particles	interact	with	matter	by	a	variety	of	“reactions”

§ The	probability	of	each	reaction	and	its	outcomes	are	captured	in	
experimentally	measured	“cross	sections”		(Latency	bound	table	lookups)

§ Follows	many	particles	(millions	or	more)	and	uses	random	numbers	to	
sample	the	probability	distributions		(Very	branchy,	divergent	code)

§ Particles	contribute	to	diagnostic	“tallies”		(Potential	data	races)

§ The	result	is	a	statistically	correct	representation	of	the	physical	system

Mercury	solves	particle	transport	problems	using	the	
Monte	Carlo	Method

Absorption Scattering Fission



LLNL-PRES-743737
4

Nuclear	cross	sections	are	not	“nice”	functions

Scattering

Absorption

Fission

Nuclear	Cross	Sections	for	235U



LLNL-PRES-743737
5

§ Three	specific	uses:	
— A	nimble	prototype	code	for	testing	design	or	refactoring	options	for	Mercury
— An	open	source	vehicle	for	co-design	with	outside	partners
— A	benchmark	code	to	replace	our	previous	Monte	Carlo	benchmark	code

§ Overall	goal	was	to	approximate	the	overall	application	performance	of	Mercury
— Control	flow	is	dominated	by	branching	due	to	the	random	sampling	of	reactions.	
— Memory	access	patterns	associated	with	reading	cross	section	tables	tend	to	be	latency-bound,	

small	memory	loads	that	are	difficult	or	impossible	to	cache	or	coalesce.	
— Domain	decomposition	and	internode	communication	to	handle	large	problems.	

§ Major	data	structures	intentionally	similar	to	Mercury

§ Flexible	inputs	to	represent	multiple	common	use	modes

Creating	Quicksilver	required	modeling	choices
Proxy	apps	are	models	for	one	or	more	aspects	of	their	parents

It	is	essential	to	to	identify	the	key	features	of	the	parent	app	the	proxy	
is	intended	to	represent	and	include	faithful	models	of	those	features



LLNL-PRES-743737
6

Quicksilver	omits	many	Mercury	features,	but	keeps	enough	to	
represent	critical	computational	patterns

Mercury Quicksilver

Cross	Sections Continuous energy	&	multi-group Multi-group	(synthetic	data)

Mesh/Geometry Multiple	types &	solid	geometry 3D	polyhedral	only

Reactions 10-40	 3	(uses	replication)

Reaction Physics Physically	based Simplified	(isotropic, etc.)

Tallies Many built-in	&	user	defined Balance	&	scalar	flux

Sources	&	population	ctrl Realistic with	variance	reduction Simplified

Load	balancing Sophisticated application	specific Trivial particle-count	based

Input	specification Python	scripting	interface Flexible problem	setup	(YAML)

MPI/OpenMP Yes/Yes Yes/Yes



LLNL-PRES-743737
7

Is	Quicksilver	a	good	representation	of	Mercury?

�

�����

������

������

������

������

������

������

� �� �� �� �� �� ��

�
��
��
��
��
��
��
�

���� ����

���������
������
�����

��������

Balance	tallies	count	each	kind	of	event.
Data	is	for	100,000	particles.

Number	of	reactions	drops	sharply

Facet	crossings	nearly	vanish

Particles	reaching	census	increases

Big	changes	during	first	10	time	steps.
Not	the	behavior	we	expected



LLNL-PRES-743737
8

§ Sourced	particles	have	random	energy	
drawn	from	uniform	distribution

§ Simplified	sourcing	rules	create	10%	of	
target	simulation	particles	each	step

§ Population	control	splits	or	kills	particles	
to	achieve	target	number
— Adjusts	particle	statistical	weight

§ In	just	a	few	time	steps,	population	
control	magnifies	any	particles	that	
survive	to	census
— Rare,	low	energy	particles	less	likely	to	

be	absorbed

The	particle	energy	spectrum	has	an	unexplained	shift.
Caused	by	unintended	consequences	of	simplified	physics	&	sourcing.

�

����

���

����

���

����

���

� �� ��� ��� ��� ���

��
��
���
�
��
��
��
���
�

������ �����

���� �
���� � 20	MeV

1	keV

Energy	groups	are	logarithmic.
Particles	in	group	135	are	about	

100x	lower	velocity	than	group	230



LLNL-PRES-743737
9

Deleting	low-weight	particles	solves	the	problem

�

����

���

����

���

����

���

� �� ��� ��� ��� ���

��
��
���
�
��
��
��
���
�

������ �����

���� �
���� �

There	is	no	such	capability	in	the	parent	application,	
but	it	makes	Quicksilver	a	better	model	for	Mercury	



LLNL-PRES-743737
10

This	is	1000s
(or	10,000s)	
of	lines	of	code

§ loop	over	cycles	(time	steps)
— cycle_init

• source	in	new	particles
• population	control

— cycle_tracking
• loop	over	particles

– until	census
• find	distance	to	census	(end	of	time	step)
• find	distance	to	material	boundary	(mesh	facet)
• find	distance	to	collision	(reaction)
• select	reaction	and	update	particle

— cycle_finalize

Quicksilver	and	Mercury	are	hostile	to	the
typical	GPU	fine-grained	threading	approach

Majority	of	
cross	section	
look	ups	are	
in	here



LLNL-PRES-743737
11

This	is	1000s
(or	10,000s)	
of	lines	of	code

§ loop	over	cycles	(time	steps)
— cycle_init

• source	in	new	particles
• population	control

— cycle_tracking
• loop	over	particles

– until	census
• find	distance	to	census	(end	of	time	step)
• find	distance	to	material	boundary	(mesh	facet)
• find	distance	to	collision	(reaction)
• select	reaction	and	update	particle

— cycle_finalize

Quicksilver	and	Mercury	are	hostile	to	the
typical	GPU	fine-grained	threading	approach

Majority	of	
cross	section	
look	ups	are	
in	here

How	do	you	write	this	code	for	GPUs?

“Fat”	threading	strategy:
• Each	thread	gets	its	own	
“vault”	of	particles

• Tally	and	buffer	data	structures	
are	replicated	to	avoid	races

• Works	great	on	CPU	platforms!



LLNL-PRES-743737
12

Make	this	a	kernel!

This	is	1000s
(or	10,000s)	
of	lines	of	code

§ loop	over	cycles	(time	steps)
— cycle_init

• source	in	new	particles
• population	control

— cycle_tracking
• loop	over	particles

– until	census
• find	distance	to	census	(end	of	time	step)
• find	distance	to	material	boundary	(mesh	facet)
• find	distance	to	collision	(reaction)
• select	reaction	and	update	particle

— cycle_finalize

Quicksilver	and	Mercury	are	hostile	to	the
typical	GPU	fine-grained	threading	approach

Majority	of	
cross	section	
look	ups	are	
in	here

Can	this	“Big-Kernel”	approach	possibly	perform	well?

“Fat”	threading	strategy:
• Each	thread	gets	its	own	
“vault”	of	particles

• Tally	and	buffer	data	structures	
are	replicated	to	avoid	races

• Works	great	on	CPU	platforms!



LLNL-PRES-743737
13

To	build	a	big	kernel,	Mercury’s	threading	model	must	change

Fat	thread

§ Dozens	of	active	threads

§ Separate	collection	of	particles	for	each	
thread

§ Data	races	managed	with	replication

§ MPI	tightly	integrated	in	tracking	loop

§ Works	well	on	CPUs

Thin	thread

§ Thousands	of	active	threads

§ All	threads	share	a	common	collection	
of	particles

§ Data	races	managed	with	atomics

§ No	MPI	in	tracking	loop

§ Works	on	GPUs	and	CPUs



LLNL-PRES-743737
14

§ Quicksilver	was	more	complicated	than	
we	wanted	to	port	GPU
— MPI,	variable	particle	count,	etc.

§ Quicksilver_lite is	even	more	
approximate	than	Quicksilver
— Zero-D	mesh,	very	simplified	physics

§ Quicksilver_lite maintains	features	
most	likely	to	impair	GPU	performance
— Random	table	look-ups	
— Call	stack	depth	in	nuclear	data	look-ups
— Branchy	control	flow	and	divergence

To	test	big-kernel	we	wrote	a	proxy	app	for	our	proxy	app

Initialize Compute
P8	CPU	(10	threads) 0.27	sec 1.25	sec

P8	CPU	(40	threads) 0.45	sec 0.72	sec

P-100	GPU 0.26	sec 0.45	sec

QS_lite run	times	(lower	is	better)

QS_lite provided	our	first	evidence
that	the	big-kernel	approach	

might	actually	work



LLNL-PRES-743737
15

§ By	changing	problem	inputs	we	can	adjust:
— Fraction	of	particles	that	reach	census
— Ratio	of	facet	crossings	to	reactions
— Relative	probabilities	of	different	reaction	types

Mercury	is	employed	for	a	very	wide	variety	of	problems
No	single	sample	problem	will	represent	all	use	cases

Fat (CPU)	seg/sec Thin (GPU)	seg/sec
Reaction	Dominated 8.52e+06 1.15e+07

Balanced 1.35e+07 7.50+e06

Facet Dominated 2.24e+07 2.90+e07

Higher	
is

better

GPUs	and	CPUs	are	similar,	but	with	difference	performance	sensitivities.
GPUs	are	slowest	in	balanced	case.		Perhaps	due	to	highest	divergence?



LLNL-PRES-743737
16

§ Different	code	capabilities	make	apples-to-apples	comparison	impossible

§ Mercury	test	problem	is	a	critical	sphere	in	water
— Tuned	mesh	size	and	time	step	to	obtain	same	tally	ratios	as	a	similar	Quicksilver	problem

Performance	comparison	to	Mercury

CPU	Performance Mercury (seg/sec) Quicksilver	(seg/sec)
Reaction	Dominated 1.62e+06 8.52e+06

Balanced 2.66e+06 1.37e+07

Facet	Dominated 2.97e+06 2.24e+07

Quicksilver	is	roughly	10x	faster	than	Mercury	on	CPUs,	but	captures	same	trends.
Performance	difference	likely	somewhat	due	to	Mercury’s	better	physics.	

Higher	
is

better



LLNL-PRES-743737
17

Will	big	kernel	work?

In	spite	of	adverse	algorithmic	characteristics,	we	are	hopeful	that	Mercury	will	perform	
equally	well	on	GPUs	as	CPUs.		A	potential	3-5x	speedup	compared	to	CPUs	only

0

10

20

30

40

50

Fat Thread 
Power 8

Thin Thread 
Power 8

Fat Thread 
KNL

Thin Thread 
KNL

Thin Thread 
P100

C
yc

le
 T

ra
ck

in
g 

Ti
m

e 
[s

ec
on

ds
] 1 Node 2 Nodes 4 Nodes

Cycle	tracking	time
for	a	reaction	

dominated	problem
(lower	is	better)



LLNL-PRES-743737
18

§ We	used	Quicksilver	to	test	design	strategies	for	Monte	Carlo	Transport	on	GPUs
— So	far,	a	big	kernel	approach	appears	to	be	viable

§ Effort	is	shifting	from	prototyping	with	Quicksilver	to	refactoring	Mercury.		
— Design	role	is	mostly	done

§ Modifications	are	planned	to	make	Quicksilver	more	representative	for	photons
— This	will	make	Quicksilver	a	more	flexible	procurement	benchmark
— More	on	proxies	vs	benchmarks	in	Thursday	keynote	talk

Conclusion	and	future	work




